Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea
نویسنده
چکیده
Anaerobic methane oxidation in archaea is often presented to operate via a pathway of "reverse methanogenesis". However, if the cumulative reactions of a methanogen are run in reverse there is no apparent way to conserve energy. Recent findings suggest that chemiosmotic coupling enzymes known from their use in methylotrophic and acetoclastic methanogens-in addition to unique terminal reductases-biochemically facilitate energy conservation during complete CH4 oxidation to CO2. The apparent enzyme modularity of these organisms highlights how microbes can arrange their energy metabolisms to accommodate diverse chemical potentials in various ecological niches, even in the extreme case of utilizing "reverse" thermodynamic potentials.
منابع مشابه
Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea.
Uncultured ANaerobic MEthanotrophic (ANME) archaea are often assumed to be obligate methanotrophs that are incapable of net methanogenesis, and are therefore used as proxies for anaerobic methane oxidation in many environments in spite of uncertainty regarding their metabolic capabilities. Anaerobic methane oxidation regulates methane emissions in marine sediments and appears to occur through a...
متن کاملReverse Methanogenesis and Respiration in Methanotrophic Archaea
Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., "trace methane oxidation"). In turn, ANME can produce methane, but only during net methane oxidation (i.e., enzymatic back flux)...
متن کاملGrowth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor.
The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaer...
متن کاملMicrobial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities.
Microbial communities in hydrothermally active sediments of the Guaymas Basin (Gulf of California, Mexico) were studied by using 16S rRNA sequencing and carbon isotopic analysis of archaeal and bacterial lipids. The Guaymas sediments harbored uncultured euryarchaeota of two distinct phylogenetic lineages within the anaerobic methane oxidation 1 (ANME-1) group, ANME-1a and ANME-1b, and of the AN...
متن کاملIdentification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea.
Phylogenetic and stable-isotope analyses implicated two methanogen-like archaeal groups, ANME-1 and ANME-2, as key participants in the process of anaerobic methane oxidation. Although nothing is known about anaerobic methane oxidation at the molecular level, the evolutionary relationship between methane-oxidizing archaea (MOA) and methanogenic archaea raises the possibility that MOA have co-opt...
متن کامل